direct product, p-group, metabelian, nilpotent (class 3), monomial, rational
Aliases: C2xC8:C22, C8:C23, D4:2C23, D8:3C22, C4.5C24, Q8:2C23, C23.50D4, SD16:1C22, M4(2):3C22, (C2xD8):11C2, (C2xC8):2C22, C4.64(C2xD4), (C2xSD16):4C2, (C2xC4).135D4, C4oD4:4C22, (C2xD4):15C22, (C22xD4):11C2, (C2xM4(2)):3C2, (C2xQ8):14C22, C2.27(C22xD4), C22.23(C2xD4), (C2xC4).139C23, (C22xC4).79C22, (C2xC4oD4):11C2, SmallGroup(64,254)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2xC8:C22
G = < a,b,c,d | a2=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >
Subgroups: 265 in 149 conjugacy classes, 81 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C2xC8, M4(2), D8, SD16, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C24, C2xM4(2), C2xD8, C2xSD16, C8:C22, C22xD4, C2xC4oD4, C2xC8:C22
Quotients: C1, C2, C22, D4, C23, C2xD4, C24, C8:C22, C22xD4, C2xC8:C22
Character table of C2xC8:C22
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ12 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ14 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ15 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8:C22 |
ρ22 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8:C22 |
(1 13)(2 14)(3 15)(4 16)(5 9)(6 10)(7 11)(8 12)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 4)(3 7)(6 8)(10 12)(11 15)(14 16)
(1 5)(3 7)(9 13)(11 15)
G:=sub<Sym(16)| (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16), (1,5)(3,7)(9,13)(11,15)>;
G:=Group( (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16), (1,5)(3,7)(9,13)(11,15) );
G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,9),(6,10),(7,11),(8,12)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,4),(3,7),(6,8),(10,12),(11,15),(14,16)], [(1,5),(3,7),(9,13),(11,15)]])
G:=TransitiveGroup(16,89);
C2xC8:C22 is a maximal subgroup of
C8:C22:C4 M4(2).47D4 C42.5D4 M4(2).48D4 C42:9D4 C42.129D4 M4(2):D4 M4(2):5D4 M4(2).4D4 M4(2).5D4 M4(2).8D4 M4(2).10D4 C42.275C23 C24.177D4 C24.104D4 C24.105D4 C4oD4:D4 (C2xQ8):16D4 (C2xD4):21D4 C42.12C23 C42.211D4 C42.444D4 C42.446D4 C42.14C23 C42.15C23 C42.18C23 M4(2).37D4 D8:10D4 D8:5D4 D8:C23
C8:pD4:C2: M4(2):14D4 M4(2):16D4 M4(2):7D4 M4(2):9D4 M4(2):10D4 M4(2):11D4 D8:9D4 SD16:D4 ...
C2xC8:C22 is a maximal quotient of
C24.177D4 C24.105D4 C42.211D4 C42.444D4 C42.219D4 C42.448D4 C24.183D4 C24.117D4 C42.225D4 C42.450D4 C42.227D4 C42.228D4 C42.230D4 C42.232D4 C42.233D4 C42.240D4 C42.243D4 M4(2):5Q8 C24.126D4 C42.263D4 C42.279D4 C42.280D4 C42.282D4 C42.286D4 C42.287D4 C42.290D4 C42.291D4 C42.302D4 C42.45C23 C42.473C23 C42.479C23 C42.57C23 C42.494C23 C42.507C23 C42.508C23 C42.509C23 C42.514C23 D8:4Q8 SD16:2Q8
C8:pD4:C2: M4(2):14D4 M4(2):7D4 C42.255D4 C42.257D4 C42.259D4 C42.261D4 C24.121D4 C24.125D4 ...
Matrix representation of C2xC8:C22 ►in GL6(Z)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | -2 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 2 | 0 |
0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | -1 | -1 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | -1 |
0 | 0 | -1 | 0 | -1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 | -1 | 0 |
0 | 0 | -1 | 0 | 0 | -1 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,1,0,0,0,0,-2,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,-1,0,0,0,2,1,-1,-1,0,0,0,1,0,0],[-1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,1,-1,-1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,-1,-1,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1] >;
C2xC8:C22 in GAP, Magma, Sage, TeX
C_2\times C_8\rtimes C_2^2
% in TeX
G:=Group("C2xC8:C2^2");
// GroupNames label
G:=SmallGroup(64,254);
// by ID
G=gap.SmallGroup(64,254);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,-2,217,650,1444,730,88]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations
Export